ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Microwave-assisted stereoselective α -2-deoxyglycosylation of hex-1-en-3-uloses

Hui-Chang Lin^a, Hsu-Hsuan Wu^a, Zi-Ping Lin^a, Chih-Yuan Lin^a, Chun-Hung Lin^b, Kun-Lung Chen^{c,d}, Fung Fuh Wong^a

- ^a Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan, ROC
- ^b Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei 11529, Taiwan, ROC
- ^c Sustainable Environment Research Center, National Cheng Kung University, No. 500, Sec. 3, An-Ming Rd., Tainan City 709, Taiwan, ROC
- ^d Department of Resources Engineering, National Cheng Kung University, No 1, Ta Hsueh Rd., Tainan 70101, Taiwan, ROC

ARTICLE INFO

Article history: Received 4 August 2009 Revised 6 October 2009 Accepted 9 October 2009 Available online 30 October 2009

Keywords: 2-Deoxyglycosides Microwave-assisted glycosylation α-2-Deoxy-ulosides Michael-type additions

ABSTRACT

 α -2-Deoxyglycosides were successfully synthesized by means of microwave-assisted glycosylation. Hex1-en-3-uloses were treated with a catalytic amount of AlCl₃ and various *O*-nucleophiles including alcohols and sugars under microwave conditions. The desired α -2-deoxy-ulosides products were obtained in good to excellent yields with high stereoselectivity ($\alpha/\beta \ge 88/12$).

Crown Copyright © 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Many antibiotic and antitumor natural products contain one or more 2-deoxyglycosides in their scaffolds, such as the angucycline family of antibiotics (landomycin A), the aureolic acid antibiotics (olivomycin A, chromomycin A₃), the enediynes (calicheamycin γ_1^1 , esperamicins A₁ and C), the avermectins (avermectin B_{1a}, ivermectin), cholestane glycosides (OSW-1) and cardiac glycosides. The carbohydrate moieties were necessary in these compounds for their bioactivity.

In the literature, several reports were made previously on the synthesis of α -2-deoxy-ulosides by means of the acid-mediated conjugate addition², the base-catalyzed Michael-type reaction,³ the enolate alkylation,⁴ the rhodium(I)-catalyzed 1,4-addition,⁵ the organocopper addition^{6,7} and the palladium-catalyzed addition.⁸ However, long reaction time and low stereoselective result were required in these cases. In this work, we reported a new microwave-assisted methodology for the synthesis of O-2-deoxyglycoside by reacting hex-1-en-3-uloses with O-nucleophiles in the presence of AlCl₃ as the catalyst. In this new microwave-assisted method, the reaction provided the corresponding α -2-deoxyglycosylation as the high kinetic stereoselective products.

2. Result and discussion

Hex-l-en-3-uloses are attractive starting materials for glycosylations via Michael-type additions.²⁻⁸ Hex-l-en-3-uloses **1** and **2** were synthesized from 3,4,6,-tri-O-acetyl-D-glucal through deprotection with methanolic sodium methoxide, 9 oxidation by pyridinium dichromate¹⁰ and acetylation¹¹ or benzoylation. Many methods were reported to synthesize α -2-deoxy-ulosides.²⁻⁸ However, their syntheses are not straightforward and smooth for the reaction time and the quantitative yield. In this Letter, we first used the microwave-assisted reaction and AlCl₃-catalyzed conjugation addition of acetyling hex-1-en-3-ulose (1) and benzoyling hex-1en-3-ulose (2) to synthesize α -2-deoxyglycosylation; representative examples are shown in Scheme 1. In the microwave-assisted method, the reliable molding procedure involved the treatment of acetyling hex-1-en-3-ulose (1) with a catalytic amount of AlCl₃ and various alcohol reactants, such as benzyl alcohol, cyclohexanol, isopropanol and n-hexyl alcohol, at 60 °C with 100 W of

ROOR
$$+ R^1OH$$
 AlCl₃ (cat) $+ ROO$ $+ ROO$

Scheme 1.

^{*} Corresponding author. Tel.: +886 4 2205 3366x5612; fax: +886 4 2207 8083. E-mail addresses: lhc550005@yahoo.com.tw, huichang@mail.cmu.edu.tw (H.-C. Lin).

Table 1Glycosylation of Hex-1-en-3-uloses (1 and 2) with simple alcohols

Entry	Substrate	Nucleophile	Product	α/β ratio ^a	Yield (%)
a	1	НО	AcO O 3	94/6	92
b	1	но-<	AcO O 4	91/9	76
c	1	но-	Aco O 5	89/11	72
d	1	НО	AcO OBn 6	93/7	89
e	2	НО	BzO O 7	92/8	92
f	2	но<	BzO OBz	88/12	74
g	2	но-	BzO OBz	94/6	68
h	2	НО	BzO OBz OBn 10	96/4	90

^a The α/β ratios were determined by ¹H NMR.

microwave energy within 6-10 min. After the reaction was completed, the reaction mixture was worked-up and purified by column chromatography on silica gel to give the desired O-2-deoxyglycoside products in good yields (3-6, 72-92%, see Table 1). All the products were fully characterized by spectroscopic methods. For example, the ¹H NMR spectrum of compound **4** showed a doublet of doublets at 5.30 ppm for the characteristic peak at the anomeric centre and a multiplet at 3.83 ppm for -CH(Me)₂ peak. The ¹³C NMR spectrum possessed a characteristic peak at 197.96 ppm for the -C=O group, at 96.53 ppm for the C-1 and at 46.56 ppm for the C-2 of hex-3-ulose. The IR absorptions of 4 provided main peaks at 1741 cm⁻¹ for stretching of the -C=O group. The synthetic strategy is applicable to the benzoylated hex-1-en-3-ulose (2) as the substrate under the same condition to afford the corresponding O-2-deoxyglycoside products **7–10** in 68–92% yields (see Table 1).

We have also compared the stereoselective behaviour of various alcohols in the Michael glycosylation, α -2-deoxy-ulosides were predominantly generated as the main isomeric products. The α/β 2-deoxy-uloside stereoselectivity was determined by 1H NMR and the ratios were greater than 88/12 (α/β , see Table 1).

A few reported literatures^{2,3} provided the direct and smooth method by using hex-l-en-3-uloses as substrates to generate disaccharides with high α -stereoselectivity and in moderate yields. Herein, we explored the newly developed method towards sugar alcohols 11-13. When we treated a CH₂Cl₂ solution of acetyling hex-1-en-3-ulose (1) with a catalytic amount of AlCl₃ at 50 °C with 100 W of microwave energy within 25-30 min, the corresponding products 14-16 were produced in 59-72% yields and the ratios of α/β 2-deoxy-uloside stereoselectivity were more than 93/7 (α/β , see Table 2). Furthermore, we tried to prolong the reaction time under the same microwave process, the reaction results were not optimized clearly. When applying sugar alcohols 11-13 under the same conditions to benzovlated hex-1-en-3ulose (2), we obtained the α -2-deoxy-uloside products 17–18 in 63–71% yields (see Table 2). During the study of the synthesis of α -disaccharides, we found that the high stereoselectivity could be accomplished in our new method. All of the product structures were determined by DEPT, NOESY and other spectroscopic

In conclusion, we have found a practical methodology for the synthesis of α -2-deoxyglycosides by using a catalytic quantity of

Table 2
Glycosylation of Hex-1-en-3-uloses (1 and 2) with sugar alcohols

Entry	Substrate	Nucleophile	Product	α/β ratio ^a	Yield (%)
a	1	MeO MeO MeO Me	AcO O O 14 MeO	93/7	68
b	1	BnO BnO Me	AcO O O O O O O O O O O O O O O O O O O	95/5	59
с	1	OH 0 13	AcO O O O O O O O O O O O O O O O O O O	96/4	72
d	2	MeO OMe 11	BzOOO 17 MeOOMe MeOOMe	96/4	63
e	2	OH 00 13	BzO O O 18	93/7	71

^a The α/β ratios were determined by ¹H NMR.

AlCl $_3$ under microwave irradiation condition. The newly developed method could be applied to O-nucleophile alcohols, including aliphatic, benzyl and sugar alcohols. The 2-deoxyglycoside products can be obtained with high α -stereochemistry and in good yields.

Acknowledgements

The authors thank the National Science Council of Taiwan (NSC96-2113-M-039-002) and China Medical University, Taiwan (CMU96-139 and CMU97-226), for their financial support.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.10.049.

References and notes

- 1. (a) Albrecht, H. P. Cardiac Glycosides. In *Naturally Occurring Glycosides*; Ikan, R., Ed.; Wiley: Chichester, UK, 1999; p 83; (b) Weymouth-Wilson, A. C. *Nat. Prod. Rep.* **1997**, 14, 99.
- Mann, B.; Pitts, D.; Koviach, J. J. Carbohydr. Chem. 2005, 24, 161–168.
 (a) Michael, K.; Kessler, H. Tetrahedron Lett. 1996, 37, 3453–3456; (b) Ganguly,
- (a) Michael, K.; Kessler, H. Tetrahedron Lett. 1996, 37, 3453–3456; (b) Ganguly.
 D.; Tang, H.; Rodriguez, M. J. Synth. Commun. 2007, 37, 4219–4226.
- 4. Gardiner, J. M.; Mills, R.; Fessard, T. Tetrahedron Lett. 2004, 45, 1215-1217.
- Ramnauth, J.; Poulin, O.; Bratovanov, S. S.; Rakhit, S.; Maddaford, S. P. Org. Lett. 2001, 3, 2571–2573.
- Goodwin, T. E.; Crowder, C. M.; White, R. B.; Swanson, J. S. J. Org. Chem. 1983, 48, 376–380
- Goodwin, T. E.; Rothman, N. M.; Salazar, K. L.; Sorrels, S. L.; Evans, F. E. J. Org. Chem. 1992, 57, 2469–2471.
- Hayashi, M.; Kawabata, H.; Shimono, S.; Kakehi, A. Tetrahedron Lett. 2000, 41, 2591–2594.
- 9. Beau, J. M.; Sinay, P. Tetrahedron Lett. 1985, 26, 6185-6188.
- Fraser-Reid, B.; Walker, D. L.; Tam, S. Y. K.; Holder, N. L. Can J. Chem. 1973, 51, 3950–3954.
- 11. Czernecki, S.; Vijayakumaran, K.; Ville, G. J. Org. Chem. **1986**, *51*, 5472–5475.